显微镜成的像是左右颠倒,上下颠倒的,为什么,请说明原理,附图,谢谢,显微镜下的成都

显微镜成的像是左右颠倒,上下颠倒的,为什么,请说明原理,附图,谢谢

答好加悬赏,谢谢

【本讲教育信息】一. 教学内容:显微镜的结构和使用、装片的制作(注:从本周开始转入复习阶段) 二. 重点和难点重点:显微镜的原理和使用方法、装片的制作难点:熟练掌握显微镜的使用及相关知识的应用和迁移,解决相关操作问题,对相应的题型能做出科学的分析,得出正确的答案。 三. 具体内容显微镜的结构和使用(2)显微镜的成像① 光源(天然光或人工光源)→反光镜→光圈→物体→物镜(凸透镜)→在镜筒内形成物体放大的实像→目镜→把经物镜形成放大的实像进一步放大② 显微镜放大倍数=物镜放大倍数×目镜放大倍数(3)高倍显微镜的使用① 用低倍显微镜观察取镜与安放: a. 右手握镜臂,左手托镜座。b. 显微镜放在实验台的前方稍偏左。对光 : a. 转动转换器,使低倍物镜对准通光孔。b. 选一较大的光圈对准通光孔,左眼注视目境,转动反光镜,使光线通过通光孔反射到镜筒内,通过目镜,可能看到自亮的视野。低倍镜观察: a. 把所要观察的玻片标本放在载物台上,用压片夹压住,标本要正对通光孔的中心。 b. 转动粗准焦螺旋,使镜筒缓缓下降,直到物镜接近玻片标本为止(此时实验者的眼睛应当看物镜镜头与标本之间,以免物镜与标本相撞)。c. 左眼看目镜内,同时反向缓缓转动粗准焦螺旋,使镜筒上升,直到看到物像为止,再稍稍转动细准焦螺旋,使看到的物像更加清晰。② 高倍镜观察 a. 移动装片,在低倍镜下使需要放大观察的部分移动到视野中央。b. 转动转换器,移走低倍物镜,转换为高倍物镜。c. 调节光圈,使视野亮度适宜。 d. 缓缓调节细准焦螺旋,使物像清晰③ 注意事项a. 使用显微镜一定要严格按照取镜→安放→对光→压片→观察的程序进行。b. 下降镜筒时,一定要用双眼从侧面注视物镜,使之接近装片,但又要防止镜头触及装片。否则会压碎装片和损坏物镜(l0x物镜的工作距离为0. 5-1 cm)。c. 有必要使用高倍物镜时,必须先在低倍物镜下将目标移到视野的中心,然后换用高倍物镜。因为在低倍物镜下看到的物像放大倍数小,但看到的标本实际面积大,容易找到目标;与低倍物镜相比,高倍物镜下看到的物像人,同样的视野面积看到的标本的实际面积小,在装片不动的情况下,高倍物镜看到的只是低倍物镜视野的中心部分。d. 换高倍物镜时,千万

显微镜下测定单斜系辉石和角闪石最大消光角的新方法

本文所述新方法,系利用作者新研究设计的显微镜操作与测算,从测量(110)或(110)解理面在薄片中的倾角(θ)入手,在(110)或(110)解理面与(010)面间存在的固定夹角(β)的基础上,测算出(010)面在薄片中的倾角(α)。然后,按视消光角(φ’)与α角和最大消光角间的三角函数关系(tgφ=tgφ’/cosα),求得最大消光角φ,即C∧Ngmax(或C∧Npmax)。该方法简便、精确,适用范围广,尤其可用于α≠0°的平行C轴的具一组柱状解理的任意方位矿物切面。
消光角是鉴定斜消光透明矿物的重要光学常数之一,尤其对于单斜晶系的辉石与角闪石类矿物,消光角具有更重要的鉴定意义。
不同晶系的矿物,或同一矿物的不同方向的切面具有不同的消光类型。斜消光的同一晶系的不同类矿物和同类不同种矿物有不同的消光角数值。同一种矿物的消光角是一个常数。但是,具一定消光角数值的同一种矿物,常常因其在薄片中的切片方向不同,而呈现出一系列数值不等的视消光角,而真正有鉴定意义的则是最大消光角(C∧Ngmax)。
最大消光角只能在光轴面上或其他隶属于一定晶带的含有欲测光学主轴与结晶轴C的水平特定切面上测得,在其他切面上测得的消光角均系视消光角。
迄今,国内外测定矿物最大消光角,除用费氏旋转台外,尚无在显微镜下直接测定最大消光角的方法。而已往在以最高(相对的)干涉色为标志的平行薄片平面的光轴面上测定消光角的传统方法,却常因所选矿物颗粒中的光轴面不真正平行于薄片平面而致使测定结果不准确,并且该方法具有尽人皆知的局限性。
鉴于上述情况,笔者把新近研究出来的、直接在显微镜下测定单斜辉石和角闪石最大消光角的新方法阐述如下。
1单斜辉石(角闪石)的消光特征简述
众所周知,矿物的消光特征以及消光角的大小,与其光性方位和切片方向密切相关。有关单斜辉石与单斜角闪石的光性方位见表1和图1,因已多有著述,此不赘言。
兹将不同方位切片的消光特点概述如下:
(1)在[100]晶带内,平行(001)的切面为对称消光(图2(c));平行(011)或(0kl)者存在有两组斜交的解理缝,既可呈现对称消光,有时也可呈现平行某一组解理的消光[1]。
(2)在[001]晶带内,平行于(010)的切面上可直接测得最大消光角C∧Ng

显微镜成像有何特点?

显微镜的成像特点:
1. 显微镜的放大倍数:是指标本放大的长度或宽度,而不是指面积或体积。显微镜的放大倍数等于所用物镜与目镜放大倍数的乘积。目镜的放大倍数越小镜头越长,物镜的放大倍数越小镜头越短。

2. 显微镜视野观察的特点:低倍镜下细胞数目多,体积小,视野亮;高倍镜下细胞数目少,体积大,视野暗。
3. 显微镜下实物与物象的关系:显微镜下所成的像是倒立的虚像,即上下、左右均是颠倒的。如细胞在显微镜下的像偏“右上方”,实际在玻片上是偏“左下方”,要将其移至视野中央,应将玻片向“右上方”移动。
原理:
光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影仪的镜头,物体通过物镜成倒立、放大的实像。
目镜相当于普通的放大镜,该实像又通过目镜成正立、放大的虚像。经显微镜到人眼的物体都成倒立放大的虚像。反光镜用来反射,照亮被观察的物体。反光镜一般有两个反射面:一个是平面镜,在光线较强时使用;一个是凹面镜,在光线较弱时使用,可会聚光线。
电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。
电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示。20世纪70年代,透射式电子显微镜的分辨率约为0.3纳米(人眼的分辨本领约为0.1毫米)。
电子显微镜最大放大倍率超过300万倍,而光学显微镜的最大放大倍率约为2000倍,所以通过电子显微镜就能直接观察到某些重金属的原子和晶体中排列整齐的原子点阵。

扩展资料:
显微镜之所以能将被检物体进行放大,是通过透镜来实现的。单透镜成象具有象差,严重影响成象质量。因此显微镜的主要光学部件都由透镜组合而成。
从透镜的性能可知,只有凸透镜才能起放大作用,而凹透镜不行。显微镜的物镜与目镜虽都由透镜组合而成,但相当于一个凸透镜。为便于了解显微镜的放大原理,简要说明一下凸透镜的5种成象规律:
(1) 当物体位于透镜物方二倍焦距以外时,则在象方二倍焦距以内、焦点以外形成缩小的倒立实象;
(2) 当物体位于透镜物方二倍焦距上时,则在象方二倍焦距上形成同样大小的倒立实象;
(3) 当物体位于透镜物方二倍焦距以内,焦点以外时,则在象方二倍焦距以外形成放大的倒立实象;&n

Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)